BleuIO

BleuIO

  • Get Started
  • Buy Now
  • Manual
  • AT Commands
  • Help

›STM32 Nucleo-144

Manual

  • How it works
  • How to use
  • Verbose Mode
  • Known Issues
  • Troubleshooting

Firmware Updates

    BleuIO Pro (SSD025)

    • Firmware Updates
    • Release History

    BleuIO (SSD005)

    • Firmware Updates
    • Release History of BleuIO (SSD005)

AT-Commands

  • List of AT Commands

BleuIO Libraries

  • JavaScript Library
  • Python Library

Scripts & Tutorials

  • Python: iBeacon
  • Python: Eddystone Beacon
  • Python: Scan
  • Python: Scan and Store
  • Python: SPS Script
  • Python: File transfer Script
  • Python: Repeater Script
  • Javascript: Google chrome.serial Beacon
  • C# Console App Example
  • C# WFA Example

Script using libraries

    Python library > v1.2.0

    • Custom Services example using Python library
    • Eddystone example using Python library
    • IBeacon example using Python library
    • Scan example using Python library
    • Scan and store example using Python library

    Python library < v1.2.0

    • Eddystone example using Python library
    • IBeacon example using Python library
    • Scan example using Python library
    • Scan and store example using Python library
    • SPS example using Python library
    • Security Example using Python library

    JS library

    • Eddystone example using Javascript library
    • IBeacon example using Javascript library
    • Scan example using Javascript library
    • Security Example using Javascript library
    • Get Device Distance

Projects

    Arduino

    • Arduino Example

    Beaglebone

    • Beaglebone Example

    Raspberry Pi

    • Raspberry PI into Beacon
    • Raspberry PI home automation

    Raspberry PI Pico

    • BleuIO integration (Part1)
    • BleuIO integration (Part2)
    • BleuIO integration (Part3)

    Renesas RA4M2

    • Signal Strength Monitoring
    • Real-Time CO2 monitor
    • Monitoring Air Quality

    STM32 Nucleo-144

    • Nucleo-144 board example
    • Smart Bulb Example

    M5Stack's CoreMP135

    • M5Stack's CoreMP135 board example

Build Your Own Firmware

  • Build Your Own Firmware
  • Advertising Example

More

  • Links
Order Now

BleuIO

$19.99

Buy Now

Nucleo-144 board example

alt text

1. Introduction

The project is a simple example showcasing a quick way to set up a STM32Cube project as a USB CDC Host capable of communicating with the BleuIO Dongle.

When a BleuIO Dongle is connected to the Nucleo boards USB port the STM32 will recognize it. It will then accept 3 different inputs from the UART and send one of 3 preprogrammed commands to the BleuIO Dongle based on the input. The commands that are used in this example are:

  • ATI (Dongle Information)
  • AT+ADVSTART (Starts Advertising)
  • AT+ADVSTOP (Stops Advertising)

We have used a STM32 Nucleo-144 development board with STM32H743ZI MCU (STM32H743ZI micro mbed-Enabled Development Nucleo-144 series ARM® Cortex®-M7 MCU 32-Bit Embedded Evaluation Board) for this example.

If you want to use another setup you will have to make sure it support USB Host and beware that the GPIO setup might be different and may need to be reconfigured in the .ioc file.

2. About the Code

You can get project HERE
https://github.com/smart-sensor-devices-ab/stm32_bleuio_example

This project based on a new STM32 project with these changes in the .ioc file:

Under 'Connectivity' the 'USB_OTG_FS'-mode is changed to Host_Only and in the NVIC Settings all global interrupts are enabled.

alt text

And under 'Middleware' the 'USB_HOST'- 'Class for FS IP' is set to 'Communication Host Class (Virtual Port Com)'.

alt text



To make sure the host would recognize when the bootloader is done and the BleuIO firmware is running this was added in the USBH_UserProcess function in 'usb_host.c' (found under 'USB_HOST' -> 'App' folder):

static void USBH_UserProcess  (USBH_HandleTypeDef *phost, uint8_t id)
{
  /* USER CODE BEGIN CALL_BACK_1 */
  switch(id)
  {
  case HOST_USER_SELECT_CONFIGURATION:
  break;

  case HOST_USER_DISCONNECTION:
  Appli_state = APPLICATION_DISCONNECT;
  isBleuIOReady = false;

  // Turn on Red LED, turn off Green and Yellow LED
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOE, GPIO_PIN_1, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, GPIO_PIN_SET);
  break;

  case HOST_USER_CLASS_ACTIVE:
  Appli_state = APPLICATION_READY;
  // Check if BleuIO firmware is running
  // (idProduct:0x6001 = bootloader, idProduct:0x6002 = bleuio fw)
  if(phost->device.DevDesc.idProduct == 0x6002)
  {
      isBleuIOReady = true;
      // Sends message to uart that BleuIO is connected and ready
      HAL_UART_Transmit(&huart3, (uint8_t*)BLEUIO_READY, strlen(BLEUIO_READY), HAL_MAX_DELAY);

      // Turn on Green LED, turn off Yellow and Red LED
      HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET);
      HAL_GPIO_WritePin(GPIOE, GPIO_PIN_1, GPIO_PIN_RESET);
      HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, GPIO_PIN_RESET);

      // Start receiving from usb
      USBH_CDC_Receive(&hUsbHostFS, CDC_RX_Buffer, RX_BUFF_SIZE);
  }
  break;

  case HOST_USER_CONNECTION:
  Appli_state = APPLICATION_START;
  isBleuIOReady = false;
  // Turn on Yellow LED, turn off Green and Red LED
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET);
  HAL_GPIO_WritePin(GPIOE, GPIO_PIN_1, GPIO_PIN_SET);
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14, GPIO_PIN_RESET);
  break;

  default:
  break;
  }
  /* USER CODE END CALL_BACK_1 */
}

The Green, Red and Yellow LEDs on the Nucleo board is also setup to change based on the connection status.

Red = Disconnnected.
Yellow = Connecting.
Green = Connected.

An external variable bool isBleuIOReady is also set so the status of the dongle is accessible from main.c.

Once the BleuIO dongle is confirmed to be connected the USBH_CDC_Receive function is run to start reciving data from the USB CDC.

The USBH_CDC_ReceiveCallback also needs to be implemented:

void USBH_CDC_ReceiveCallback(USBH_HandleTypeDef *phost)
{
    if(phost == &hUsbHostFS)
    {
        // Handles the data recived from the USB CDC host, here just printing it out to UART
        rx_size = USBH_CDC_GetLastReceivedDataSize(phost);
        HAL_UART_Transmit(&huart3, CDC_RX_Buffer, rx_size, HAL_MAX_DELAY);

        // Reset buffer and restart the callback function to receive more data
        memset(CDC_RX_Buffer,0,RX_BUFF_SIZE);
        USBH_CDC_Receive(phost, CDC_RX_Buffer, RX_BUFF_SIZE);
    }

    return;
}

In this example the recieved data is just echoed to the UART.



To send data to the Dongle the USBH_CDC_Transmit function is used. In this example UART input is used to send different commands.

For this purpose a wrapper function has been created that can be accessed from main.c:

/**
  * @brief Simple function that takes a string and transmit it to the dongle
  * @retval None
  */
void writeToDongle(uint8_t * cmd)
{
    USBH_CDC_Transmit(&hUsbHostFS, cmd, strlen((char *)cmd));
}

In main.c HAL_UART_RxCpltCallback is implemented to recieve input from Uart and a simple UART input handler:

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)
{
    if(UartHandle == &huart3)
    {
        RX_value = (int)aRxBuffer[0];
        uartStatus = UART_RX_NONE;

        switch(RX_value)
        {
            case UART_RX_0:
            {
                uartStatus = UART_RX_0;
                break;
            }
            case UART_RX_1:
            {
                uartStatus = UART_RX_1;
                break;
            }
            case UART_RX_2:
            {
                uartStatus = UART_RX_2;
                break;
            }
            default:
            {
                uartStatus = UART_RX_NONE;
                break;
            }
        }
        // Resets uart recieve interrupt mode
        HAL_UART_Receive_IT(&huart3, (uint8_t *)aRxBuffer, RXBUFFERSIZE);
    }
}


/**
  * @brief Simple uart input handler
  * @retval None
  */
void handleUartInput(UARTCommandTypeDef cmd)
{
    switch(cmd)
    {
        case UART_RX_0:
        {
            // 0
            uart_buf_len = sprintf(uart_tx_buf, "\r\n(0 pressed)\r\n");
            HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            if(isBleuIOReady)
            {
                writeToDongle((uint8_t*)DONGLE_CMD_ATI);
            } else
            {
                uart_buf_len = sprintf(uart_tx_buf, BLEUIO_NOT_READY_MSG);
                HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            }
            uartStatus = UART_RX_NONE;
            break;
        }
        case UART_RX_1:
        {
            // 1
            uart_buf_len = sprintf(uart_tx_buf, "\r\n(1 pressed)\r\n");
            HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            if(isBleuIOReady)
            {
                writeToDongle((uint8_t*)DONGLE_CMD_AT_ADVSTART);
            } else
            {
                uart_buf_len = sprintf(uart_tx_buf, BLEUIO_NOT_READY_MSG);
                HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            }
            uartStatus = UART_RX_NONE;
            break;
        }
        case UART_RX_2:
        {
            // 2
            uart_buf_len = sprintf(uart_tx_buf, "\r\n(2 pressed)\r\n");
            HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            if(isBleuIOReady)
            {
                writeToDongle((uint8_t*)DONGLE_CMD_AT_ADVSTOP);
            } else
            {
                uart_buf_len = sprintf(uart_tx_buf, BLEUIO_NOT_READY_MSG);
                HAL_UART_Transmit(&huart3, (uint8_t *)uart_tx_buf, uart_buf_len, HAL_MAX_DELAY);
            }
            uartStatus = UART_RX_NONE;
            break;
        }
        case UART_RX_NONE:
        {
            break;
        }
        default:
        {
            uartStatus = UART_RX_NONE;
            break;
        }
    }
}

The handleUartInput() handles the inputs 0, 1 and 2 and maps each to a certain Dongle commands. The handler is then put inside the main loop.

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    MX_USB_HOST_Process();
    /* USER CODE BEGIN 3 */
    // Simple handler for uart input
    handleUartInput(uartStatus);
  }
  /* USER CODE END 3 */


3. Using the example project

3.1 What you will need

  • A BleuIO dongle (https://www.bleuio.com/)
  • A board with a STM32 Microcontroller with a USB port. (A Nucleo-144 development board: NUCLEO-H743ZI2, was used developing this example. (https://www.st.com/en/evaluation-tools/nucleo-h743zi.html)
    To connect the dongle to the Nucleo board a "USB A to Micro USB B"-cable with a USB A female-to-female adapter can be used.)

    alt text
  • STM32CubeIDE (https://www.st.com/en/development-tools/stm32cubeide.html)

4. How to setup project

4.1 Downloading the project from GitHub

Get project HERE
https://github.com/smart-sensor-devices-ab/stm32_bleuio_example

Either clone the project, or download it as a zip file and unzip it, into your STM32CubeIDE workspace.

4.2 Importing as an Existing Project

  • From STM32CubeIDE choose File>Import...
    alt text
  • Then choose General>Existing Projects into Workspace then click 'Next >'
    alt text
  • Make sure you've choosen your workspace in 'Select root directory:'
  • You should see the project "stm32_bleuio_example", check it and click 'Finish'.
    alt text

5. Running the example

  • In STMCubeIDE click the hammer icon to build the project.

  • Open up the 'STMicroelectronics STLink Viritual COM Port' with a serial terminal emulation program like TeraTerm, Putty or CoolTerm.

    Serial port Setup:
    Baudrate: 115200
    Data Bits: 8
    Parity: None
    Stop Bits: 1
    Flow Control: None

  • In STMCubeIDE click the green play button to flash and run it on your board. The first time you click it the 'Run Configuration' window will appear. You can just leave it as is and click run.

  • Connect the BleuIO Dongle.

  • Wait until the message: "[BleuIO Dongle Ready]" is shown.

Welcome!
- Press 0 to get device information:

Welcome!

1 to start advertising:

Welcome!

2 to stop advertising:

Welcome!


Dongle response will be printed to UART.

6. Links

  • Go to BleuIO Manual

  • Go to BleuIO Blog

← Monitoring Air QualitySmart Bulb Example →
  • 1. Introduction
  • 2. About the Code
  • 3. Using the example project
    • 3.1 What you will need
  • 4. How to setup project
    • 4.1 Downloading the project from GitHub
    • 4.2 Importing as an Existing Project
  • 5. Running the example
  • 6. Links

Support Request

If you have any queries or technical questions, please don't hesitate to send us a message. We will reply within 24 hours.

Message Sent!

Docs
ManualAT CommandsHelp
Community
YouTubeLinkedInFacebook
More
BleuIOSmart Sensor DevicesGitHub
Sales & Support
support@bleuio.comsales@bleuio.com
Copyright © 2025 BleuIO. A product of Smart Sensor Devices