

Table of Contents
How it works ... 3

How to use .. 4

Windows .. 4

Linux / Raspberry Pi ... 7

Mac OS X .. 10

Issues ... 14

Firmware Updates .. 15

Troubleshooting .. 17

AT COMMANDS... 18

Scripts & Tutorials ... 28

Getting Started .. 28

iBeacon .. 29

Eddystone Beacon ... 33

Scan Example .. 38

Scan and Store Example .. 41

SPS Script ... 44

How it works
Introduction
Thank you for purchasing the Smart USB Dongle 2.0!
In this user manual we will show you how to start using the Smart USB Dongle 2.0, what it can
do and how to use it.

Smart USB Dongle 2.0 is a Bluetooth Low Energy (BLE) capable USB Dongle that, with simple
AT-Commands, can easily be used to create new BLE applications.

When in the Central role it can scan and present a list of nearby advertising Peripherals,
connect to a connectable peripheral and if the SPS profile is present in the peripheral it can
receive and transmit data.

When in the Peripheral role it can start and stop advertising, set custom advertising- and
response data, allow a Central device to connect to it and receive and transmit data via the SPS
profile.

It is also possible to update the firmware via the USB port.

Requirements
The following hardware and software elements are required to use the Smart USB Dongle 2.0:

 The Smart USB Dongle 2.0.

 A Windows OS Computer with a functioning USB port.

 A terminal software such as RealTerm, Putty or Teraterm.

A target device such as:

 A Mobile Phone with Bluetooth and an App such as BLE Scanner, LightBlue or DSPS from
Dialog Semiconductor

 A Computer with Bluetooth and a BLE scanning application installed

 Another Smart USB Dongle 2.0 connected to a Computer

Recommended Port Setup

Recommended Port setup:

Baudrate: 57600

Data bits: 8

Parity: None

Stop bits: 1

Flow controll: None

How to use

Windows

Step 1

Figure 1: Connect the dongle to your computer.

Step 2

Figure 2: Open Device Manager and check under Ports (COM & LPT) that a new COM port
has popped up.

You can open up Device Manager to see that the dongle is properly connected. The Smart USB
Dongle 2.0 includes a bootloader which allows you to easily update the firmware (or flash your
own application to the dongle, more on that HERE). When starting up, the dongle will open up a
COM port for the bootloader for 10 seconds to allow you to update the firmware (or flash your
own application). Afterwards it will close that port and open a new port for the Smart USB
Dongle 2.0 application which is the one we're interested in here.
NOTE: The COM port number may vary and may not be the same as in the picture above.

Step 3

Figure 3: Open your terminal software and select the COM port your dongle is plugged into.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/firmware.html

Step 4

Figure 4: Try typing an AT-Command, for example AT.
If you get an OK response that means the dongle is working.

Done

Great job! You are now ready to start using Smart USB Dongle 2.0!

Now check out the different AT Commands available or how to get started using scripts.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/commands.html
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/examplescripts.html

Linux / Raspberry Pi
Step 1

Figure 1: Connect the dongle to your Linux / RaspberryPi.

Step 2

Figure 2: Run: ls /dev.
To identify which device name the dongle is connected to, you will need to run:

1. ls /dev

You might need to do it twice, once before you connect the dongle and once after to be able to
identify which one is the device name. The Smart USB Dongle 2.0 includes a bootloader which
allows you to easily update the firmware (or flash your own application to the dongle, more on
that HERE). When starting up, the dongle will open up a COM port for the bootloader for 10
seconds to allow you to update the firmware (or flash your own application). Afterwards it will
close that port and open a new port for the Smart USB Dongle 2.0 application which is the one
we're interested in here. You can run:

1. lsusb

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/firmware.html

It should list a device with the ID: 2dcf:6001 when the bootloader is active but change to
2dcf:6002 after 10 seconds when the application is running.

NOTE: The device name may vary and may not be the same as in the picture above.

Step 3

You will need a serial communication program to communicate with the dongle. For this tutorial
we will be using Minicom. You can get Minicom by running:

1. sudo apt-get install minicom

Now, to start using the dongle run the following command if, for example, your dongle is
connected to the device name ttyACM0:

1. minicom -b 9600 -o -D /dev/ttyACM0

Figure 3: Open your terminal software.

Step 4

Now try typing an AT-Command. For example AT .
If you get an OK response that means the dongle is working.

Done

Great job! You are now ready to start using Smart USB Dongle 2.0!

Now check out the different AT Commands available or how to get started using scripts.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/commands.html
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/examplescripts.html

Mac OS X
Step 1
First connect the dongle to your Mac.

Step 2
To identify which device name the dongle is connected to, you will need to run:

1. ls /dev/cu.*

You should see something like:

1. $ ls /dev/cu.*
2. /dev/cu.Bluetooth-Modem /dev/cu.iPhone-WirelessiAP
3. /dev/cu.Bluetooth-PDA-Sync /dev/cu.usbmodem123456781

The dongle should show up as: /dev/cu.usbmodem123456781 if it shows up with a different
name use that instead.
When starting up, the dongle will open up a COM port for the bootloader for 10 seconds to allow
you to update the firmware (or flash your own application). Unfortunately this is not as of yet
available on Mac. Afterwards it will close that port and open a new port for the Smart USB
Dongle 2.0 so you might need to wait a few seconds before doing the next step.

Step 3

You can either use the Mac OS X built in Terminal and screen or an external communication
program to communicate with the dongle. For this tutorial we will show how to get started using
terminal and screen and also a popular serial communication software called Minicom also via
the terminal.
With Screen:

Figure 1: Terminal and screen.

Simply type:

1. screen /dev/cu.usbmodem123456781 9600

With Minicom:
If you have Homebrew* you can get Minicom by simply running:

1. sudo brew install minicom

 (If you don't have Homebrew click here to find out how to install it)
Now you need to setup Minicom by running:

1. minicom -s

https://brew.sh/

Figure 2: Minicom settings.
Go to Serial port setup > Serial Device and type in: /dev/cu.usbmodem123456781 in the field
and press enter. Then Save setup as dfl.
Now, to start using the dongle just run:

1. minicom

Figure 3: Minicom ready to use.

Step 4

Now try typing an AT-Command. For example AT .
If you get an OK response that means the dongle is working.

Done

Great job! You are now ready to start using Smart USB Dongle 2.0!

Now check out the different AT Commands available or how to get started using scripts.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/commands.html
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/examplescripts.html

Issues
Showing advertising and/or response data, either when setting or querying, has been
temporarily disabled.

Firmware Updates

Introduction

The Smart USB Dongle 2.0 comes with a bootloader to allow you to update the firmware or
flash your own application to the dongle. To flash the dongle you will need a image file
containing the new firmware or your own application and a host USB loader application (that
you can get
 HERE for Windows (host_usb_updater.zip) or

 HERE for Linux (host_usb_updaterlinux.zip)).

USB loader application for Mac is unfortunately not available at the moment.

Latest Firmware
[2020-06-30] v1.0.7 Firmware

Version 1.0.7 Download Release Notes

Older Firmwares

Version 1.0.6 Download Release Notes

Version 1.0.5 Download Release Notes

Version 1.0.4 Download Release Notes

Version 1.0.3 Download Release Notes

https://smart-sensor-devices-ab.github.io/ssd005-manual/files/host_usb_updater.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/host_usb_updaterlinux.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/smart_usb_dongle.1.0.7.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/release_history#release-v107
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/smart_usb_dongle.1.0.6.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/release_history#release-v106
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/smart_usb_dongle.1.0.5.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/release_history#release-v105
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/smart_usb_dongle.1.0.4.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/release_history#release-v104
https://smart-sensor-devices-ab.github.io/ssd005-manual/files/smart_usb_dongle.1.0.3.zip
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/release_history#release-v103

How to update your firmware

Linux side

 Run with

sudo ./host_usb_updater /dev/ttyACM0 ./example_firmware.img

means USB-CDC driver of Linux. It can be changed according to test machine.

 Sometimes a modemmanager in Linux system like Ubuntu might interrupt the USB-CDC
communication. In that case you can try disabling it.

Windows side

 Open the command prompt in the directory where the host_usb_updater.exe is located.
 Run with

 host_usb_updater.exe 24 example_firmware.img -verbose

- The 24 means COM port number of USB-CDC device. You can see the COM port number on
Windows device manager. COM port number may vary on different machines. - Debug
message can be enabled by -verbose option.

NOTE: For simplicity's sake it is recommended to keep the image-file
and host_usb_updater.exe in the same folder otherwise you will need to provide the path to
where image file is stored relative to the host_usb_updater.exe.

Troubleshooting

General issues
The Smart USB Dongle 2.0 is connected but doesn't show up.

 Try another USB port.

 Unplug all other devices connected to your USB ports and try connecting the dongle again.

 On older machines: Make sure that you have the correct CDC drivers installed.

 Try connecting it to another computer.

Bootloader issues
Bootloader fails to upload image file.

 Verify that you are trying to upload a valid image file.

 Try if you can upload a different image file.

 Make sure you are trying to upload the image file during the time window where the bootloader
is open.

 Make sure you have closed down anything, like serial communication programs (e. g. TeraTerm
or Minicom), that might be connected to the dongle before trying to upload a new image.

 For Linux users: Try disabling the modemmanager. As it may lock up the com port for awhile
and not leaving enough time to use the boodloader before the main app starts up.

Firmware issues
I have flashed my own firmware but it doesn't start.

 Make sure you have changed the crystal setup in custom_config_qpsi.h as the Smart USB
Dongle 2.0 doesn’t have a 32KHz crystal:

Change

1.
#define dg_configUSE_LP_CLK LP_CLK_32768 // 32KHz. Usually the default in most
 Dialog Semiconductor projects.

To

1. #define dg_configUSE_LP_CLK LP_CLK_RCX // 16Khz.

AT COMMANDS

AT

Basic AT-Command.

Command Syntax

AT AT

Example:

1. AT

2. Executing 'AT'...

3.
4. OK

ATI

Device information query. Returns firmware version, hardware type and unique
organization identifier.

Command Syntax

ATI ATI

Example:

1. ATI
2. Executing 'ATI'...
3.
4. OK
5. SSD005 Dongle DA14683 v 1.0.1

ATR

Trigger platform reset.

Command Syntax

ATR ATR

1. Example:
ATR

2. Executing 'ATR'...
3.
4. OK

AT+ADVDATA

Sets or queries the advertising data. Data must be provided as hex string. The content
will take effect only after advertising is restarted.
If you want to send several data types separate it with a space.

Command Syntax

AT+ADVDATA

AT+ADVDATA=xx:xx:xx:xx:xx:xx

AT+ADVDATA=(xx:xx:xx:xx) (xx:xx:xx:xx:xx)

Example:

1. AT+ADVDATA=04:09:43:41:54
2. Executing 'AT+ADVDATA=04:09:43:41:54'...
3.
4.
5.
6. OK

AT+ADVDATAI

Sets advertising data in a way that let's it be used as an iBeacon.

Command Syntax

AT+ADVDATAI AT+ADVDATAI=(UUID)(MAJOR)(MINOR)(TX)

Example:

1. AT+ADVDATAI=ebbaaf47-0e4f-4c65-8b08-dd07c98c41ca0000000000
2.
3. Executing 'AT+ADVDATAI=ebbaaf47-0e4f-4c65-8b08-dd07c98c41ca0000000000'...
4.
5. OK

AT+ADVSTART

Starts advertising. Advertising interval can optionally be specified in milliseconds (100 to
3000ms). Time_ms controlls how for how long the dongle will advertise. Set to 0 for
unlimited. Returns ERROR if advertising is already active or if the device is in central role.

Command Syntax

AT+ADVSTART AT+ADVSTART

AT+ADVSTART=(mode);(intv_min);(intv_max);(time_ms);

Supported modes:

Code Mode

0: Non-connectable mode

1: Undirected mode

2: Directed mode

3: Directed Low Duty Cycle mode

Example:

1. AT+ADVSTART=1;200;300;20;
2. Executing 'AT+ADVSTART'...
3.
4. OK
5.
6.
7. ADVERTISING....

AT+ADVSTOP

Stops advertising. Returns ERROR if not already advertising.

Command Syntax

AT+ADVSTOP AT+ADVSTOP

Example:

1. AT+ADVSTOP
2. Executing 'AT+ADVSTOP'...
3.
4. OK
5.
6. STOPPING ADVERTISING...
7.
8.
9. ADVERTISING STOPPED.

AT+ADVRESP

Sets or queries scan response data. Data must be provided as hex string. Changes to take
effect after restart of advertising.

Command Syntax

AT+ADVRESP

AT+ADVRESP=(xx:xx:xx:xx:xx:xx:xx)

Example:

1. AT+ADVRESP=04:09:43:41:54
2. Executing 'AT+ADVRESP'...
3.
4. OK

AT+CENTRAL

Sets the device Bluetooth role to central role. Advertising must be stopped and any
connection must be terminated before the role change is accepted.

Command Syntax

AT+CENTRAL AT+CENTRAL

Example:

1. AT+CENTRAL
2. Executing 'AT+CENTRAL'...
3.
4. OK

AT+GAPCONNECT

Initiates a connection with a specific slave device. Upon succesfully connecting atempts to
display device name, advertising and response data and the services of the peripheral.
The local device must be in central role.

Command Syntax

AT+GAPCONNECT AT+GAPCONNECT=slave_address

Example:

1. AT+GAPCONNECT=FD:37:13:D0:6D:02
2. Executing 'AT+GAPCONNECT=FD:37:13:D0:6D:02'...
3.
4. OK
5.
6. CONNECTING...
7. CONNECTED

AT+GAPDISCONNECT

Disconnects from a peer Bluetooth device. This command can be used in both central and
peripheral role.

Command Syntax

AT+GAPDISCONNECT AT+GAPDISCONNECT

Example:

1. AT+GAPDISCONNECT
2. Executing 'AT+GAPDISCONNECT'...
3.
4. OK
5.
6. DISCONNECTED

AT+GAPSCAN

Starts a Bluetooth device scan with or without timer set in seconds. Only accepted when
device is in central role and not connected. The scan will continue indefinitly in no
parameters set or until amount of time set is reached. Scan will abort if user presses
CTRL+C.

Command Syntax

AT+GAPSCAN AT+GAPSCAN

AT+GAPSCAN=seconds

Example:

1. AT+GAPSCAN
2. Executing 'AT+GAPSCAN'...
3.
4. OK
5.
6. SCANNING...
7.
8. [01] Device: [1]30:63:C5:D0:B1:DE RSSI: -38
9. [02] Device: [0]D0:76:50:80:0A:98 RSSI: -75 (closebeacon.com)
10. [03] Device: [1]27:5D:B8:2E:96:B0 RSSI: -51
11. [04] Device: [1]5E:CE:CF:C5:20:BB RSSI: -84
12.
13.
14. SCAN COMPLETE

AT+GAPSTATUS

Reports the Bluetooth role.

Command Syntax

AT+GAPSTATUS AT+GAPSTATUS

Example:

1. AT+GAPSTATUS
2. Executing 'AT+GAPSTATUS'...
3.
4. OK
5.
6. PERIPHERAL

AT+GATTCREAD

Read attribute of remote GATT server. Can only be used in Central role and when
connected to a peripheral.

Command Syntax

AT+GATTCREAD AT+GATTCREAD=handle param

Example:

1. AT+GATTCREAD=001B
2. Executing 'AT+GATTCREAD=001B'...
3.
4. OK
5.
6. handle_evt_gattc_read_completed: conn_idx=0000 handle=001b status=0
7.
8. Value read: HELLO
9. Hex: 0x48454C4C4F
10. Size: 5

AT+GATTCWRITE

Write attribute to remote GATT server in ASCII. Can only be used in Central role and when
connected to a peripheral.

Command Syntax

AT+GATTCWRITE

AT+GATTCWRITE=(handle param)

(msg)

Example:

1. AT+GATTCWRITE=001B
2. Executing 'AT+GATTCWRITE=001B HELLO'...
3.
4. OK
5.
6. DATA WRITTEN: HELLO

AT+GATTCWRITEB

Write attribute to remote GATT server in Hex. Can only be used in Central role and when
connected to a peripheral.

Command Syntax

AT+GATTCWRITEB

AT+GATTCWRITEB=(handle param)

(msg)

Example:

1. AT+GATTCWRITE=001B
2. Executing 'AT+GATTCWRITE=001B 0101'...
3.
4. OK
5.
6. DATA WRITTEN: 0101
7. Size: 2

AT+PERIPHERAL

Sets the device Bluetooth role to peripheral. Any connection must be terminated before
the role change is accepted.

Command Syntax

AT+PERIPHERAL AT+PERIPHERAL

Example:

1. AT+PERIPHERAL
2. Executing 'AT+PERIPHERAL'...
3.
4. OK

AT+SCANTARGET

Scan a target device. Displaying it's advertising data as it updates.

Command Syntax

AT+SCANTARGET

AT+SCANTARGET=(slave

address)

Example:

1. AT+SCANTARGET=00:00:00:00:00:01
2. Executing 'AT+SCANTARGET=00:00:00:00:00:01'...
3.
4. OK
5.
6. SCANNING...
7.
8. [01] Device Data: DataXYZ
9. [01] Device Data: DataXYZ
10. [01] Device Data: DataXYZ
11. [01] Device Data: DataXYZ
12. [01] Device Data: DataXYZ

AT+SPSSEND

Send a message or data via the SPS profile. Without parameters it opens a stream for
continiously sending data.

Command Syntax

AT+SPSSEND AT+SPSSEND=(message)

AT+SPSSEND

Example:

1. AT+SPSSEND=HELLO
2. Executing 'AT+SPSSEND=HELLO'...
3.
4. OK

--H

 Shows all AT-Commands.

Command Syntax

--H --H

Example:

1. --H
2.
3. AT [A] Basic AT-Command.
4. ATI [A] Device information query.
5. AT+ADVDATA [P]
6. ...

Scripts & Tutorials

Getting Started
To use these scripts you will need to have Python installed. Both Python2 and Python3 should
work but the scripts are made with Python3 in mind. But there are comments where the script
need to be edited to work with Python2. You will also need to install the module pySerial. The
easiest way to install it is through pip (which you should already have after installing Python) by
running:
Python2:

1. pip install pyserial

Python3:

1. python3 -m pip install pyserial

Now you can download the script you want to use, from our GITHUB PAGE. Then open up the command

prompt inside the directory where the script you want to run is. Then run:

1. python scriptname.py

NOTE: You will need to manually change the COM port in the script to which ever your dongle uses.

The number may vary from machine to machine.

Follow the video tutorial to learn how to get started using the Smart USB Dongle 2.0.

https://www.youtube.com/watch?v=6EYSGS0oZ3s

https://www.python.org/
https://pyserial.readthedocs.io/en/latest/pyserial.html
https://pip.pypa.io/en/stable/installing/
https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master

iBeacon

Introduction

iBeacon technology allows Mobile Apps to understand their position on a micro-local scale, and
deliver content to users based on location. It is a Bluetooth Low Energy technology.

BLE Advertising uses a one-way communication method. Beacons that want to be discovered
can Advertise self-contained packets of data in set intervals. Smartphones collect these
packets, which can be used for various applications to trigger things like push messages,
prompts or app actions.

Beacons ideal for indoor location tracking because a standard BLE has a broadcast range of up
to 100 meters. With an iBeacon network, any retailer, app, platform or brand will be able to
locate a customer and send contents and advertisements to customers on their smartphones.

You can set up your own IBeacon easily using Smart USB dongle 2.0 and Python script. This
device works equally well in Windows 10, Linux or macOS.

iBeacon are defined by the Apple company including following parameters: UUID, Major and
Minor

You can build your own beacon by defining your own parameter values.

What is UUID?

UUID stands for Universally Unique Identifier. It contains 32 hexadecimal digits, split into 5
groups, like this:

5f2dd896-b886-4549-ae01-e41acd7a354a0203010400

The UUID is a standard identifying system which allows a 'unique' number to be generated for a
beacon network. The purpose of the UUID is to identify iBeacons in your network, from all other
possible beacons in networks not in your control.

What are Major and Minor values?

Major and Minor values are numbers assigned to your iBeacons, in order to identify individual
iBeacon within your UUID network. Minor and Major are unsigned integer values between 0 and
65535. The iBeacon standard requires both a Major and Minor value to be assigned.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/ibeaconscript#introduction
https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/ibeaconscript#introduction

How to use

Connect the Bluetooth USB Adapter to your computer. It opens a virtual serial port (COM port)
that you can use to send commands to and from the Bluetooth USB Adapter.

Control Bluetooth USB Adapter using predefined commands. List of AT Commands

The Smart USB Dongle 2.0 includes a bootloader which allows you to easily update the firmware

(or flash your own application to the dongle)

After connecting, you can use the following sample python script to set up your own iBeacon.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/commands

1. import serial
2. import time
3.
4. connecting_to_dongle = 0
5. print("Connecting to dongle...")
6. # Trying to connect to dongle until connected. Make sure the port and baudrate is the same as your

 dongle.
7. # You can check in the device manager to see what port then right-

click and choose properties then the Port Settings
8. # tab to see the other settings
9. while connecting_to_dongle == 0:
10. try:
11. console = serial.Serial(
12. port='COM14',
13. baudrate=57600,
14. parity="N",
15. stopbits=1,
16. bytesize=8,
17. timeout=0
18.)
19. if console.is_open.__bool__():
20. connecting_to_dongle = 1
21. except:
22. print("Dongle not connected. Please reconnect Dongle.")
23. time.sleep(5)
24.
25.
26. print("\n\nConnected to Dongle.\n")
27. print("\n Welcome to the iBeacon example!\n\n")
28.
29.
30. new_input = 1
31. while 1 and console.is_open.__bool__():
32. # get keyboard input once
33. if (new_input == 1):
34. # Python 2 users
35. # input = raw_input("Enter the UUID... ")
36. new_input = input("Enter the UUID (x) string with Major (j), Minor (n) and TX (t) (format:

"
37. "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxjjjjnnnntt): ")
38. time.sleep(0.1)
39. # sends the commands to the dongle. Important to send the \r as that is the return-key.
40. console.write(str.encode("AT+ADVDATAI="))
41. console.write(new_input.encode())
42. console.write('\r'.encode())
43. time.sleep(0.1)
44. console.write(str.encode("AT+ADVSTART=0;200;3000;0;"))
45. console.write('\r'.encode())
46. out = ''
47. # let's wait one second before reading output (let's give device time to answer)
48. time.sleep(1)
49. while console.inWaiting() > 0:
50. out += console.read(console.inWaiting()).decode()
51. else:
52. if not out.isspace():
53. # We make sure it doesn't print the same message over and over again by setting [out]

to blankspace
54. # after printing once and check for blankspace before print again
55. print(">>" + out)
56. out = " "

Full source also available on GitHub.

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/ibeacon_example

Youtube Tutorial

Follow the Youtube tutorial.

https://www.youtube.com/watch?v=CixqMR3leGs

https://www.youtube.com/watch?v=CixqMR3leGs

Eddystone Beacon

Getting started

Copy the following script and save it as eddystone_example.py on your local directory. You
can also download the source code from our GitHub page.

1. import serial
2. import time
3.
4. connecting_to_dongle = 0
5. print("Connecting to dongle...")
6. # Trying to connect to dongle until connected. Make sure the port and baudrate is the same as your

 dongle.
7. # You can check in the device manager to see what port then right-

click and choose properties then the Port Settings
8. # tab to see the other settings
9. while connecting_to_dongle == 0:
10. try:
11. console = serial.Serial(
12. port='COM14',
13. baudrate=57600,
14. parity="N",
15. stopbits=1,
16. bytesize=8,
17. timeout=0
18.)
19. if console.is_open.__bool__():
20. connecting_to_dongle = 1
21. except:
22. print("Dongle not connected. Please reconnect Dongle.")
23. time.sleep(5)
24.
25.
26. print("\n\nConnected to Dongle.\n")
27. print("\n Welcome to the Eddystone example!\n\n")
28.
29.
30. new_input = 1
31. while 1 and console.is_open.__bool__():
32. # get keyboard input once
33. if (new_input == 1):
34. # Python 2 users
35. # input = raw_input("Enter the Eddystone url hex string: ")
36. new_input = input("Enter the Eddystone url hex string: ")
37. time.sleep(0.1)
38. # sends the commands to the dongle. Important to send the \r as that is the return-key.
39. console.write(str.encode("AT+ADVDATA=03:03:aa:fe "))
40. console.write(new_input.encode())
41. console.write('\r'.encode())
42. time.sleep(0.1)
43. console.write(str.encode("AT+ADVSTART=0;200;3000;0;"))
44. console.write('\r'.encode())
45. out = ''
46. # let's wait one second before reading output (let's give device time to answer)
47. time.sleep(1)
48. while console.inWaiting() > 0:
49. out += console.read(console.inWaiting()).decode()
50. else:
51. if not out.isspace():
52. # We make sure it doesn't print the same message over and over again by setting [out]

to blankspace
53. # after printing once and check for blankspace before print again
54. print(">>" + out)

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/develop/eddystone_example

55. out = " "

Then go to the directory you saved the script and open a command propt. Then run the script by
typing:

1. python eddystone_example.py

The script will now ask you for a eddystone url hex string.

I will now show you how to prepare one.

Eddystone url hex string

Let's say we want to send http://google.com
The url hex string will then looks like this: 0d:16:aa:fe:10:00:03:67:6f:6f:67:6c:65:07
0d - Length of the following string in hex. 0D is 13 and as you see there is 13 bits after this one.
It is important that this correspondes with your length otherwise it will not run.

Keep in mind that you have a maximum of 17 bytes worth of space for your url.

http://google.com/

Hex Description

16 Service Data data type value (No need to change this)

aa 16-bit Eddystone UUID (No need to change this)

fe 16-bit Eddystone UUID (No need to change this)

10 Frame Type = URL (No need to change this)

Hex Description

00 TX Power.

03 https:// (Eddystone has a list of 1 byte codes for popular prefixes and sufixes)

67 hex for 'g'

6f hex for 'o'

6f hex for 'o'

67 hex for 'g'

6c hex for 'l'

65 hex for 'e'

07 .com (Eddystone has a list of 1 byte codes for popular prefixes and sufixes)

Here is two helpful sites that can help you autogenerate an eddystone hex url string:

https://www.mkompf.com/tech/eddystoneurl.html
https://yencarnacion.github.io/eddystone-url-calculator/
Just keep in mind that you will still need to put a colon (:) between every byte when you put it in
the script for it to work.

https://www.mkompf.com/tech/eddystoneurl.html
https://yencarnacion.github.io/eddystone-url-calculator/

Supported prefix list

Hex Expansion

00 http://www.

01 https://www.

02 http://

03 https://

Supported sufix list

Hex Expansion

00 .com/

01 .org/

02 .edu/

03 .net/

04 .info/

05 .biz/

06 .gov/

07 .com

08 .org

09 .edu

http://www/
https://www/

Hex Expansion

0a .net

0b .info

0c .biz

0d .gov

0e to 20 Reserved for Future Use

7F to FF Reserved for Future Use

Full source also available on GitHub.

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/sps_example

Scan Example

Scan example

In this tutorial, we're going to set up the dongle using Python script to scan for nearby Bluetooth
devices. For a quick setup, copy the following script and save it on your local directory. You can
also get the source code from our GitHub. page.

1. import serial
2. import time
3.
4. connecting_to_dongle = 0
5. print("Connecting to dongle...")
6. # Trying to connect to dongle until connected. Make sure the port and baudrate is the same as your

 dongle.
7. # You can check in the device manager to see what port then right-

click and choose properties then the Port Settings
8. # tab to see the other settings
9. while connecting_to_dongle == 0:
10. try:
11. console = serial.Serial(
12. port='COM14',
13. baudrate=57600,
14. parity="N",
15. stopbits=1,
16. bytesize=8,
17. timeout=0
18.)
19. if console.is_open.__bool__():
20. connecting_to_dongle = 1
21. except:
22. print("Dongle not connected. Please reconnect Dongle.")
23. time.sleep(5)
24.
25.
26. print("\n\nConnected to Dongle.\n")
27. print("\nWelcome to the Bluetooth device Scanning example!\n\n")
28.
29.
30. new_input = "NEW-INPUT"
31. while 1 and console.is_open.__bool__():
32. # get keyboard input once
33. if (new_input == "NEW-INPUT"):
34. # Python 2 users
35. # input = raw_input("Select:\n1) If you... ")
36. new_input = input("Select:\n1) If you'd like to scan for devices without a timer to stop.\

n2)"
37. " If you'd like to scan for devices for a selected period of time.\n"
38. "3) If you'd like to scan a specific device.\n>>")
39. if new_input == "1":
40. time.sleep(0.1)
41. # sends the commands to the dongle. Important to send the \r as that is the return-

key.
42. console.write(str.encode("AT+CENTRAL"))
43. console.write('\r'.encode())
44. time.sleep(0.1)
45. console.write(str.encode("AT+GAPSCAN"))
46. console.write('\r'.encode())
47. elif new_input == "2":
48. time.sleep(0.1)
49. # sends the commands to the dongle. Important to send the \r as that is the return-

key.
50. console.write(str.encode("AT+CENTRAL"))
51. console.write('\r'.encode())

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/scanning_example

52. input_time = input("Please select amount of time the scanning should continue: ")
53. while not input_time.isdigit():
54. input_time = input("Sorry, unacceptable time.\n"
55. "Please select amount of time the scanning should continue: ")

56. console.write(str.encode("AT+GAPSCAN="))
57. console.write(input_time.encode())
58. console.write('\r'.encode())
59. elif new_input == "3":
60. time.sleep(0.1)
61. # sends the commands to the dongle. Important to send the \r as that is the return-

key.
62. console.write(str.encode("AT+CENTRAL"))
63. console.write('\r'.encode())
64. time.sleep(0.1)
65. input_adress = input("Please enter type ([0] or [1]) and the address (xx:xx:xx:xx:xx:x

x) of the device you "
66. "\nwish to scan (format:[x]xx:xx:xx:xx:xx:xx): ")
67. console.write(str.encode("AT+SCANTARGET="))
68. console.write(input_adress.encode())
69. console.write('\r'.encode())
70. else:
71. print("That was not a choice. Please choose one of the options.")
72. new_input="NEW-INPUT"
73. # let's wait one second before reading output (let's give device time to answer)
74. time.sleep(1)
75. out = ""
76. while console.inWaiting() > 0:
77. out += console.read(console.inWaiting()).decode()
78. else:
79. if not out.isspace():
80. # We make sure it doesn't print the same message over and over again by setting [out]

to blankspace
81. # after printing once and check for blankspace before print again
82. print(out + " ")
83. out = " "

Open up the command prompt in the directory where the script is located. Start the script by
typing

1. python scriptname.py

and press Enter.

You should now be prompted to choose between three options.

 Scan without time limit. (requires no input)

 Scan with a time limit. (requires an input a number representing the time in seconds.)

 Scan a specific devices advertising data. (requires an address to the desired Bluetooth device
which we can get from the other two options)

Option 3 will show the full advertising and response data of 31 bytes from the selected device.

And that is how we scan for Bluetooth devices. If you want to stop the script, you can simply
press control C.

Youtube Tutorial

Follow the Youtube tutorial.

https://www.youtube.com/watch?v=oidvEd5QoXg

Scan and Store Example

Scan and Store example

In this tutorial, we're going to set up the dongle using Python script to scan for nearby Bluetooth
devices with a specific Manufacturer Specific (MFS) ID and then store the results together with
a timestamp and the MAC Address in a simple text file. For a quick setup, copy the following
script and save it on your local directory. You can also get the source code from our GitHub.
page.

1. import serial
2. import time
3. from datetime import datetime
4.
5. # Name of file that will be created and store the saved data
6. file_name = "SavedData.txt"
7. connecting_to_dongle = 0
8. print("Connecting to dongle...")
9.
10. # Trying to connect to dongle until connected. Make sure the port and baudrate is the same as your

 dongle.
11. # You can check in the device manager to see what port then right-

click and choose properties then the Port Settings
12. # tab to see the other settings
13. while connecting_to_dongle == 0:
14. try:
15. console = serial.Serial(
16. port='COM14',
17. baudrate=57600,
18. parity="N",
19. stopbits=1,
20. bytesize=8,
21. timeout=0
22.)
23. if console.is_open.__bool__():
24. connecting_to_dongle = 1
25. except:
26. print("Dongle not connected. Please reconnect Dongle.")
27. time.sleep(5)
28.
29.
30. print("\n\nConnected to Dongle.\n")
31. print("\n Welcome to the Scan and Store example!\n\n")
32.
33. # Method for parsing and writing to file
34. def write_data_to_file(out_data):
35. addr_string = ""
36. data_string = ""
37. now = datetime.now() # Generating a timestamp
38. current_time = now.strftime("%H:%M:%S") # Formatting the timestamp
39. out_data = out_data.replace('\r','') # Remove return.
40. out_data = out_data.replace('\n','') # Remove new line.
41. fo = open(file_name, "a")
42. for i in range(2,21): # Reading the MAC-Address and saving it into addr_string
43. addr_string += out_data[i]
44. for x in range(41, 102): # Here the advertising/response data gets stored in the data_string v

ariable
45. data_string += out_data[x]
46. fo.write("{")
47. fo.write("["+current_time+"]")
48. fo.write(addr_string)
49. fo.write(":")
50. fo.write(data_string)

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/scan_and_store_example

51. fo.write("}\n")
52. fo.close()
53.
54.
55. new_input = 1
56. try:
57. while 1 and console.is_open.__bool__():
58. # get keyboard input once
59. if (new_input == 1):
60. # Python 2 users
61. # input = raw_input("Enter something such as a Manufacturer Specific (MFS) ID to scan

for and store in a file or just leave it blank to scan all: ")
62. new_input = input("Enter something such as a Manufacturer Specific (MFS) ID to scan fo

r and store in a file or just leave it blank to scan all: ")
63. time.sleep(0.1)
64. # sends the commands to the dongle. Important to send the \r as that is the return-

key.
65. console.write(str.encode("AT+CENTRAL"))
66. console.write('\r'.encode())
67. time.sleep(0.1)
68. console.write(str.encode("AT+FINDSCANDATA="))
69. console.write(new_input.encode())
70. console.write('\r'.encode())
71. out = ''
72. # Let's wait one second before reading output (let's give device time to answer)
73. time.sleep(1)
74. print("\nCollecting data...\nPress Ctrl-C to stop.")
75. while console.inWaiting() > 0:
76. out += console.read(console.inWaiting()).decode()
77. else:
78. if not out.isspace():
79. # We make sure it doesn't print the same message over and over again by setting [o

ut] to blankspace
80. # and check for blankspace and that [out] isn't anything else before writing to fi

le
81. if not out.__contains__("AT+") and not len(out) <= 106:
82. write_data_to_file(out)
83. out = " "
84. except KeyboardInterrupt:
85. exit()

Open up the command prompt in the directory where the script is located. Start the script by
typing

1. python scan_and_store_example.py

and press Enter.

You should now be prompted to enter what you want to scan for. For example a Manufacturer
Specific ID (if you want to scan for Smart Sensor Devices products for example you enter the
Flag for MFS Data FF and then our MFS ID: 5B07).

The script will then generate a *.txt file in the same directory with the name entered as
the file_name variable in the script. For example: "SavedData.txt".
The script will run until you stop it. You can then have a look in the text file...

Note that the script will not work if the text file is open or altered during runtime.

And that is how we store data that we scanned from Bluetooth devices. If you want to stop the
script, you can simply press control C.

SPS Script

SPS Echo example

In this tutorial, we're going to set up two dongles a using Python script to send data back and
forth between them.

In short:

1. One dongle will take on the Central role and the other will take on the Peripheral role.

2. Then they will connect to each other.

3. The Central dongle will then start off sending a message; "Echo".

4. The Peripheral dongle will then receive the message and send it back to the Central dongle
which in turn will receive it and send it back and so forth until the script is stopped.

For a quick setup, copy the following script and save it on your local directory. You can also get
the source code from our GitHub. page.

1. import serial
2. import time
3.
4. target_dongle_mac_address = "[0]40:48:FD:E5:2D:05" # Change this to the peripheral's mac address.

5. your_com_port = 'COM14' # Change this to the com port your dongle is connected to.
6.
7. # Global
8. connecting_to_dongle = True
9. counter = 0
10. msg = ""
11. latest_msg = ""
12. error_counter = 0
13.
14. print("Connecting to dongle...")
15. # Trying to connect to dongle until connected. Make sure the port and baudrate is the same as your

 dongle.
16. # You can check in the device manager to see what port then right-

click and choose properties then the Port Settings
17. # tab to see the other settings
18. while connecting_to_dongle:
19. try:
20. console = serial.Serial(
21. port=your_com_port,
22. baudrate=57600,
23. parity="N",
24. stopbits=1,
25. bytesize=8,
26. timeout=0
27.)
28. if console.is_open.__bool__():
29. connecting_to_dongle = False
30. except:
31. print("Dongle not connected. Please reconnect Dongle.")
32. time.sleep(5)
33.
34. # This script will send data from one dongle to another which in turn will echo it back and forth

between the dongles.
35. print("\n\nConnected to Dongle.\n")

https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/sps_example

36. print("\nWelcome to the Serial Port Service (SPS) example!\n\n")
37. print("\nRemember to setup the Peripheral dongle first so Central has something to connect to.\n\n

")
38.
39. # Python 2 users
40. # input = raw_input("Choose \n1) for Peripheral...
41. role_input = input("Choose: \n1) for Peripheral Role\n2) for Central role\n>> ")
42. while not (role_input == "1" or role_input == "2"):
43. role_input = input("Please choose 1 or 2.\nChoose: \n1) for Peripheral Role \n2) for Central r

ole\n>> ")
44.
45. connected = "0"
46. while 1 and console.is_open.__bool__():
47. if role_input == "1":
48. print("Starting advertising.")
49. time.sleep(0.1)
50. # Sends the commands to the dongle. Important to send the \r as that is the return-key.
51. console.write(str.encode("AT+ADVSTART"))
52. console.write('\r'.encode())
53. while connected == "0":
54. dongle_output = console.read(console.in_waiting)
55. time.sleep(2)
56. print("Awaiting connection to Central...")
57. if not dongle_output.isspace():
58. # We make sure it doesn't print the same message over and over again by resetting

[out] to blankspace
59. # after printing once and check for blankspace before print again
60. print(dongle_output.decode())
61. if dongle_output.__contains__(str.encode("\r\nCONNECTED.\r\n")):
62. # Opens Serial Stream
63. console.write(str.encode("AT+SPSSEND"))
64. console.write('\r'.encode())
65. connected = "1"
66. print("Connected!")
67. dongle_output = " "
68. elif role_input == "2":
69. # This is what will be sent back and forth between the dongles.
70. # You can change this message to whatever you like.
71. msg = "Echo"
72. # Sends the commands to the dongle. Important to send the \r as that is the return-key.
73. console.write(str.encode("AT+CENTRAL"))
74. console.write('\r'.encode())
75. time.sleep(0.1)
76. print("Putting dongle in Central role and trying to connect to other dongle.")
77. while connected == "0":
78. # Sends the commands to the dongle. Important to send the \r as that is the return-

key.
79. time.sleep(0.5)
80. console.write(str.encode("AT+GAPCONNECT="))
81. console.write(str.encode(target_dongle_mac_address))
82. console.write('\r'.encode())
83. dongle_output2 = console.read(console.in_waiting)
84. time.sleep(2)
85. print("Trying to connect to Peripheral...")
86. if not dongle_output2.isspace():
87. # We make sure it doesn't print the same message over and over again by resetting

[out] to blankspace
88. # after printing once and check for blankspace before print again
89. print(dongle_output2.decode())
90. if dongle_output2.decode().__contains__("CONNECTED."):
91. # Opens Serial Stream
92. console.write(str.encode("AT+SPSSEND"))
93. console.write('\r'.encode())
94. connected = "1"
95. print("Connected!")
96. time.sleep(2)
97. # We wait a bit then sends the starting msg to the other dongle.
98. console.write(str.encode(msg))

99. counter += 1
100. dongle_output2 = " "
101. while connected == "1":
102. dongle_output3 = console.read(console.in_waiting)
103. # Let's wait 2 seconds to make sure we have had a chance of receiving anything before proc

eeding
104. time.sleep(2)
105. if not dongle_output3.isspace():
106. # Here we check if we receive a message.
107. if dongle_output3.__contains__(str.encode("\r\n[Received]: ")):
108. print(dongle_output3)
109. # Sometimes some extra bytes will be sent along with the message that the decode()

 function can't handle
110. # so we put it in a try-

except block so that it wont crash the script. We also save the last message as
111. # a fallback in case of error.
112. try:
113. # Here we convert the msg to a string and strip it of all newlines and carriag

e returns.
114. msg = str(dongle_output3.decode("ascii"))
115. msg = msg.replace('[Received]: ', '')
116. msg = msg.replace("\r\n", "")
117. latest_msg = msg
118. except:
119. # In case of an error we use the last received message instead and increment t

he error counter.
120. msg = latest_msg
121. error_counter += 1
122. print("This is what we will send: " + msg)
123. # Encodes the string msg than sends it back to the other dongle.
124. console.write(str.encode(msg))
125. counter += 1
126. # Just a little counter to show how many messages we've sent.
127. print(str(counter) + " message(s) sent. " + str(error_counter) + " error(s).")
128. # In case we get disconnected from the other dongle we go back to the previous sta

te of waiting for a
129. # connection (Peripheral) / trying to reconnect (Central).
130. if dongle_output3.__contains__(str.encode("\r\nDISCONNECTED.")):
131. print("Disconnected!")
132. # Send an Escape to abort stream.
133. console.write(0x1B)
134. connected = "0"
135. dongle_output3 = ""
136. msg = ""

Connect a dongle each into two computers that has Python installed.

Change the COM-port in the script on both computers to match the ones your dongles is
actually connected to. For the one that will be set up as the Central dongle you will also need to
change the target_dongle_mac_address variable to the MAC address of your Peripheral dongle.

You can get the MAC address by scanning for the other dongle while it's advertising. To learn
more about how to scan check out our scanning tutorial.
Open up the command prompt, on both computers, in the directory where the script is located.
Start the script by typing

1. python sps_example.py

and press Enter.

You should now be prompted to enter 1 or 2 depending on what role the dongle should have.
Set one as Peripheral and the other as Central. It is advisable to setup the Peripheral first as the
Central will need someone to connect to.

You should now see in the terminal how the dongles send and recieve data to and from each
other.

The script will run until you stop it.

And that is an example of how we can send data between two dongles. If you want to stop the
script, you can simply press control C.

Full source also available on GitHub.

https://smart-sensor-devices-ab.github.io/ssd005-manual/docs/scanscript
https://github.com/smart-sensor-devices-ab/ssd005_example_scripts/tree/master/sps_example

